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Abstract

This paper introduces a fully deterministic machine-learning pipeline for discover-
ing, validating, and deploying systematic trading signals in digital asset markets. The
framework integrates principal component analysis (PCA) and unsupervised clustering
with walk-forward validation, realistic trade simulation, and rigorous risk management.
By enforcing strict data hygiene, deterministic feature scaling, and statistical confidence
testing, the system ensures institutional-grade reproducibility and credible out-of-sample
performance. Empirical results on BTC-USD data from 2020–2025 demonstrate positive
expectancy and market-neutral characteristics, with an out-of-sample Sharpe ratio of 5.50.

1 Introduction
Quantitative research in cryptocurrency markets frequently encounters challenges such as over-
fitting, look-ahead bias, and inconsistent feature engineering, which undermine the reliability
of trading signals. To mitigate these issues, we developed a modular research architecture that
treats each stage—from raw data ingestion to live execution—as a deterministic computation,
ensuring end-to-end reproducibility.

The pipeline was trained and validated on BTC-USD data at 5-minute and 15-minute res-
olutions from January 2020 to April 2024, comprising approximately 500 thousand bars. This
period captures diverse market regimes, including bull runs, crashes, and consolidations. Each
module processes data in a forward-only manner, guaranteeing that live trading employs the
same transformations and parameters validated during backtesting.

2 Related Work
Prior work in signal discovery often relies on supervised models (e.g., LSTM for price pre-
diction (8)) or ensemble methods (3), but these approaches are prone to overfitting in noisy
crypto data. Unsupervised techniques like clustering have been applied to equity patterns (2),
but rarely with deterministic scaling for crypto. Our pipeline builds on these by emphasizing
execution realism and portfolio-level correlation control, drawing from risk parity frameworks
(7) and community detection algorithms (1).
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3 Pipeline Overview
The framework comprises a sequence of specialized modules, each addressing a key aspect
of quantitative rigor (Table 1). This modular design facilitates debugging, parallelization, and
incremental improvements.

Table 1: Pipeline Modules and Their Core Functions

Domain Core Function

Feature Engineering Converts OHLCV data into normalized features cap-
turing volatility, momentum, and structure.

Pattern Discovery Applies PCA and K-Means to identify recurring N-
bar micro-patterns (N = 1–8).

Signal Validation Tests patterns via walk-forward simulations with
path-true exits.

Execution Realism Models order-fill delays and cancel thresholds based
on empirical distributions.

Statistical Confidence Uses bootstrap resampling to estimate expectancy and
drawdown uncertainty.

Correlation Control Groups overlapping strategies using Louvain commu-
nity detection.

Portfolio Allocation Assigns risk weights based on stability and ex-
pectancy.

Deployment & Risk Packages strategies into bundles and enforces dy-
namic limits in production.

Figure 1: Pipeline flowchart (visualize as a linear sequence with feedback loops for monitor-
ing).

These modules form a closed research-to-execution loop: discover → validate → deploy
→ monitor → refine.

4 Feature Engineering and Normalization
Raw OHLCV data are transformed into a standardized feature vector per bar. Normalization
uses constants computed on in-sample data (2020–2024) and frozen for out-of-sample and live
use, preventing adaptive bias.
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Table 2: Feature Categories and Purposes

Category Examples Purpose

Candle Geometry Body size, wick lengths (nor-
malized by ATR)

Captures imbalance and mo-
mentum.

Volatility & Volume 24-bar volatility/volume ra-
tios

Identifies activity expansions.

Trend Position Price deviation from 96-bar
MA

Provides intermediate con-
text.

Macro-Context Deviation from CME weekly
close, RSI(14)

Incorporates sentiment.

Higher-Time-Frame MA50 slopes from 1h/4h/1d
charts

Integrates multi-scale trends.

Temporal Encoding Sine/cosine for day-of-
week/time-of-day

Models periodicity.

Features are rank-normalized or clipped to [−1,1] to handle outliers, yielding stable inputs
for downstream PCA (retaining 85–90% variance).

5 Pattern Discovery
Normalized features form overlapping N-bar sequences (N = 1–8), reduced via PCA to low-
dimensional embeddings (5). K-Means (k ≈ 250 per N) clusters these into micro-patterns, such
as volatility compressions or breakouts (6).

Walk-forward validation splits data (training: 2020–2024; testing: 2024–2025) with an
8-hour gap to eliminate leakage. Centroids are stored for deterministic live assignment.

6 Signal Validation
For each cluster, simulations compute maximum favorable/adverse excursions (MFE/MAE)
over horizons (e.g., 5m–8h; see Appendix B). A grid search optimizes stop-loss/take-profit
quantiles for maximum expectancy, ensuring positive bias on out-of-sample data. Bar-by-bar
replays respect actual price paths.

Only clusters with bootstrap confidence intervals > 0 qualify.

7 Execution Realism
A central challenge in translating backtested signals into live trading performance lies in ac-
counting for real-world execution frictions—slippage, latency, and partial fills. The framework
explicitly models these frictions using empirical order-fill distributions derived from historical
exchange data. For each identified trading pattern, fill probabilities are estimated as a function
of order distance from the mid-price and elapsed time in market, yielding realistic cancel-delay
thresholds that typically range from two to forty-six bars depending on volatility regime and
pattern duration.

Signals that fail to reach their quoted limit price within this calibrated delay window are
marked as unfilled and excluded from expectancy calculations, reproducing the behavior of
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time-to-live orders in production systems. All simulations also incorporate a maker/taker fee
model of 4–6 basis points per round trip, which reduces theoretical expectancy by approxi-
mately 20–30 percent—an empirically observed haircut that closely matches live results.

By embedding these probabilistic fill and cancellation models directly into the trade-replay
engine, the pipeline narrows the gap between theoretical backtests and executable performance,
ensuring that signal evaluation and execution both operate under realistic, latency-aware as-
sumptions.

8 Statistical Confidence and Robustness
Reliable signal discovery requires quantifying the statistical confidence of observed perfor-
mance. To achieve this, the system employs non-parametric bootstrap resampling of trade-level
outcomes. Thousands of resampled equity paths are generated by drawing with replacement
from the empirical return distribution, and from these paths the mean expectancy, standard
deviation, and maximum drawdown are estimated. This procedure captures the uncertainty as-
sociated with limited sample sizes and non-Gaussian return shapes common in short-horizon
trading systems.

For each trading pattern, 95 percent confidence intervals are computed for both expectancy
and drawdown. The lower confidence bound, CIlower, serves as a conservative measure of
robustness. A composite stability metric,

Stability Score = CIlower ×
√

Ntrades,

jointly rewards statistical reliability and sufficient sampling depth. Only clusters with positive
lower bounds and meaningful trade counts are advanced to the portfolio stage, ensuring that
the final strategy set reflects statistically significant edges rather than sampling noise.

9 Correlation Control and Portfolio Construction
Statistically sound strategies can still fail if they are highly correlated or repeatedly active at
the same times. To mitigate this, the framework builds an overlap graph in which each node
represents a candidate pattern and edges connect pairs of patterns that tend to trigger concur-
rently or exhibit similar directional behavior. Edge weights reflect the degree of temporal and
directional overlap, forming a network of correlated trading behaviors.

This network is partitioned using community-detection techniques that maximize modular-
ity, thereby identifying groups of strategies that behave similarly. Within each group, strategies
are ranked by their stability and out-of-sample expectancy, and only the most robust represen-
tatives are retained. Each selected strategy receives a dynamic risk budget between 0.5 and 2
percent of account equity, scaled inversely with its intra-group correlation.

The result is a portfolio that combines numerous uncorrelated micro-edges into a coherent
market-neutral ensemble, reducing drawdown concentration and enhancing long-term Sharpe
consistency.

10 Deployment Framework
Once validated, strategies are serialized into structured configuration bundles for live deploy-
ment. Each bundle encapsulates all deterministic artifacts—feature scalers, principal-component
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loadings, cluster centroids, profit-target and stop-loss parameters, and associated statistical di-
agnostics—so that live trading environments can reproduce the exact model state used during
research.

In production, the trading engine performs real-time feature extraction and cluster assign-
ment using these stored transformations, guaranteeing that identical market data always maps
to identical signals. Because feature-scaling constants and normalization parameters are frozen
from the training phase, the live system remains immune to adaptive drift or parameter leakage.

This serialization architecture therefore bridges research and execution seamlessly, main-
taining one-to-one determinism between backtested and deployed models while supporting
continuous verification and version control.

11 Risk Management and Live Governance
A runtime manager enforces:

Table 3: Risk Management Guardrails

Limit Type Default Value Purpose

Single Trade Risk ≤2% equity Contains losses.
Daily Loss Limit ≤3% equity Triggers cooldown.
Max Positions 2 Avoids overcrowding.
Emergency Stop −15% drawdown Preserves capital.

Live drift detection pauses strategies if expectancy drops below bootstrap bounds.

12 Backtesting Standards and Verification
The pipeline adheres to best practices:

Table 4: Backtesting Standards

Criterion Implementation

No Look-Ahead Bias Datetime-based windowing.
Out-of-Sample Testing Fixed splits with isolation gaps.
Reproducibility Frozen constants; versioned artifacts.
Execution Realism Delay filtering and fees.
Confidence Bootstrap intervals.
Correlation Control Louvain grouping.
Risk Deployment Real-time limits.

13 Empirical Results
The framework was evaluated on BTC–USD data at 5-minute resolution over a one-year out-
of-sample period from 2024-10-01 to 2025-10-01. This interval represents a fully forward-
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validated test using previously unseen data, matching the conditions and parameter sets de-
ployed in the live trading environment.

Figure 2: BTC-USD 5-minute out-of-sample test (2024-10-01 → 2025-10-01): cumulative
return percentage with running-maximum overlay.

Table 5: BTC-USD 5-Minute Forward Test Performance (2024-10-01 → 2025-10-01)

Metric Value

Total Trades 894
Win Rate 60.5%
Expectancy (bps/trade) +27
Average Return (% / Trade) 0.27%
Total Return (%) +392.85%
Capital Multiple 4.93×
Maximum Drawdown −15.06%
Daily Volatility 1.73%
Annualized Sharpe Ratio 5.50

Performance was measured using a compound-return framework, where cumulative equity
Vt evolves as

rdaily =
Vt

Vt−1
−1, r̄geo =

(
VT

V0

)1/T

−1,

with r̄geo = 0.53% and realized daily volatility σdaily = 1.73%. Using a geometric mean daily
return of 0.53% and realized daily volatility of 1.73%, the annualized Sharpe ratio is computed
as

Sharpe =
r̄geo

σdaily

√
302 = 5.50,
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where the factor
√

302 reflects the number of active trading days observed during the forward-
testing period.

The equity trajectory (Figure 2) shows sustained compounding with shallow drawdown
recovery phases, achieving nearly fivefold growth while maintaining moderate volatility. The
daily return correlation with BTC spot price movements was measured at ρ = 0.436, indicating
moderate but non-dominant directional sensitivity. This suggests that while the framework
occasionally aligns with broader market momentum, its performance is primarily driven by
independent structural patterns rather than direct trend following.

14 Deployment and Automation
The deployment process bridges research validation and live trading through deterministic con-
figuration transfer rather than continuous re-training. Once all clusters have been evaluated
across their respective horizons, the top-performing clusters for each N-bar pattern are selected
based on their out-of-sample expectancy, confidence intervals, and stability scores.

Each selected cluster is exported as a parameterized configuration that includes its full trad-
ing specification: entry and exit thresholds, stop-loss and take-profit levels, holding horizon,
directionality, and assigned portfolio risk percentage. These configurations are bundled and
uploaded to the live trading engine, which executes them deterministically against real-time
market data.

This manual curation step ensures that only statistically robust and economically meaning-
ful clusters are promoted to production. By preserving the exact parameter sets derived from
validation, the live system operates as a controlled extension of the research environment—no
adaptive updates or automated re-fitting are performed in production. This approach prioritizes
reliability and traceability, ensuring that every live trade can be directly attributed to a validated
research artifact.

15 Conclusion
This deterministic pipeline enables reliable signal discovery in volatile crypto markets, bridging
ML research and production trading.

15.1 Limitations and Future Work
While the current framework demonstrates strong reproducibility and stable market-neutral per-
formance, several avenues remain for improvement. The analysis to date focuses exclusively
on the BTC-USD pair, limiting the scope of cross-asset generalization. Extending the frame-
work to altcoins, equities, and foreign-exchange data would test the universality of its feature
representations and uncover asset-specific regime dynamics.

Execution realism could also be enhanced by modeling dynamic liquidity and order-book
depth, allowing trade-sizing and cancellation policies to adapt to instantaneous market con-
ditions. Incorporating reinforcement-learning agents for order placement may further reduce
slippage variance and improve fill efficiency.

Finally, ensemble and meta-learning methods could be explored to combine multiple clus-
tering or PCA projections, producing more robust signals under non-stationary conditions. In-
tegrating these adaptive components within the deterministic architecture would preserve re-
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producibility while adding self-calibration, moving the framework toward a fully autonomous,
continuously learning trading system.
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A Feature Summary

Table 6: Feature Descriptions and Normalizations

Feature Description Normalization

size body norm Candle body vs ATR Percentile-clipped
size uw norm / size lw norm Wick lengths Log-percentile
volume ratio 24 norm Volume relative to 24-bar moving aver-

age
Rank-quantile

trend ma pos 96 norm Price deviation from 96-bar moving av-
erage

Percentile-clip

volatility ratio 24 norm High–low range relative to ATR(24) Rank-quantile
cme deviation norm Deviation from CME weekly close Clipped ±25%
rsi norm Normalized RSI (14-period) Linear [−1,1]
range norm 288 Position within daily range (288-bar

window)
Linear [−1,1]

ma50 slope (1h/4h/1d) norm Higher-timeframe MA50 slopes (1h,
4h, 1d)

Z-score → tanh
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